|
02.04.2015 Новый шаг в редактировании геномаАмериканские ученые сумели еще немного усовершенствовать метод редактирования генома – систему CRISPR/Cas9. Они нашли вариант белка Cas9, который легче доставить в клетки, чем использовавшиеся ранее варианты. Благодаря открытию системы редактирования генома CRISPR/Cas9 за последние пару лет произошла настоящая революция. Дела идут настолько хорошо, что уже есть возможность редактировать гены в человеческих эмбрионах, и в научном сообществе разгорелась нешуточная полемика о том, этично ли это, безопасно ли это и так ли необходимо. Пока сошлись на том, что надо как следует убедиться в безопасности метода, да и прямой необходимости нет: экстракорпоральное оплодотворение с последующей селекцией эмбрионов вполне справляется с тем, чтобы не допустить передачи опасных мутаций по наследству. Однако в экспериментах на животных метод отлично работает. Совсем иначе обстоят дела с редактированием генома отдельных клеток уже родившегося организма. Соображения «против» этического плана возникают здесь гораздо реже, а если иногда и возникнут, будут нейтрализованы состоянием и прогнозом пациентов с болезнями, от которых предполагается лечить, редактируя геном. Уже сейчас проводятся или скоро начнут проводиться клинические испытания применения стволовых клеток крови с отредактированными геномами для лечения ВИЧ/СПИДа и β-талассемии. Выбор этих двух болезней не случаен. Работать со стволовыми клетками крови в смысле модификации генома проще всего. Можно взять кровь у пациента, выделить из нее стволовые клетки, размножить их, модифицировать, отсортировать те, где модификация действительно произошла, размножить их и ввести обратно пациенту. Высокий пролиферативный потенциал этих клеток и возможность манипулировать ими вне организма пациента делает непринципиальным вопрос эффективности процедуры модификации. Также обстоят дела и с модифицированием геномов эмбрионов, которые еще не начали делиться. Если взять достаточно эмбрионов, то всегда найдется один, модификация в котором произошла. Если проделывать манипуляции на стадии одной клетки, можно не беспокоиться: все клетки выросшего организма будут содержать модификацию. Но пока для модификации генома значительного процента клеток, например, печени, метод недостаточно эффективен. В первую очередь это связано с методом доставки системы CRISPR/Cas9 в клетки. Эта система по своей природе бактериальная, у бактерий она работает иммунитетом. Одни из естественных врагов бактерий – бактериофаги (вирусы). У бактериофагов чаще всего геном представлен молекулой ДНК. Бактерии синтезируют молекулы РНК, частично комплементарные вирусному геному, эти молекулы взаимодействуют с вирусной ДНК и привлекают своими сигнальными последовательностями белок Cas9, который вносит разрыв в ДНК бактериофага. Бактерии могут запоминать врагов и, аналогично приобретенному иммунитету у человека, создавать в своем геноме архивные ДНК-копии противовирусных РНК. Это позволяет реагировать быстрее в случае повторного нападения. Исследование таких архивных копий в бактериальных геномах и привело к открытию системы CRISPR/Cas9. Если вводить в клетки только ДНК, кодирующую направляющую РНК и ген Cas9, в соответствующем месте ДНК образуется разрыв, который будет починен системами репарации клетки, скорее всего, с искажением кода ДНК. Этот метод применяется для инактивации генов. Чтобы произошло редактирование, нужно вводить еще и правильный вариант гена. Оптимальным по сочетанию эффективности и безопасности методом введения генетических конструкций в эукариотические клетки сегодня считаются аденоассоциированные вирусы. Но у них есть существенный для данного применения недостаток: размер ДНК, которую можно упаковать, заметно ограничен. Предел составляет примерно 4500 пар оснований, в то время как стандартный вариант Cas9, принадлежащий Streptococcus pyogenes, кодируется геном длиной примерно 4200 пар оснований. Предыдущие попытки этих же авторов найти у какой-нибудь другой бактерии ген покороче или создать его самим увенчались лишь частичным успехом. Зато в этот раз они нашли подходящий ген у золотистого стафилококка. Этот ген оказался на целую тысячу пар оснований короче, а белок не уступал в активности общепринятым вариантам. Это позволило добавить в конструкцию регуляторные области и вообще повысить эффективность модификации. С помощью нового белка авторы работы отредактировали геном клеток печени, содержащий вариант PCSK9 гена, связанный с высоким уровнем холестерина в крови. Модифицированными в результате оказались 40% клеток печени у мышей, а уровень холестерина в крови снизился почти вдвое. Сейчас авторы работают над тем, чтобы их метод можно было использовать для лечения миодистрофии Дюшена – моногенного заболевания, смерть от которого неизбежно настигает носителей поврежденного гена в подростковом возрасте. Источники: |
|
|
© GENETIKU.RU, 2013-2022
При использовании материалов активная ссылка обязательна: http://genetiku.ru/ 'Генетика' |