НОВОСТИ    БИБЛИОТЕКА    СЛОВАРЬ-СПРАВОЧНИК    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

06.10.2017

Атлас микроРНК

Международный консорциум, куда входили российские ученые из Института общей генетики РАН и Московского физико-технического института, разработал атлас микроРНК человека и мыши. МикроРНК играет важную роль в регуляции генов и дифференциации клеток, и они уже почти все известны науке. Однако про то, какие участки генома участвуют в регуляции самих микроРНК, было известно мало. Ученые нашли эти участки с помощью специального алгоритма, определили активность всех микроРНК в разных тканях и результаты выложили в открытый доступ. Научная работа опубликована в журнале Nature Biotechnology, кратко о ней сообщает пресс-релиз МФТИ.

Атлас микроРНК
Атлас микроРНК

«МикроРНК представляют собой один из важнейших механизмов регуляции экспрессии генов. Создание полного атласа микроРНК в различных клетках приближает нас еще на один шаг к видению всей картины регуляции генов», – комментирует Юлия Медведева, один из соавторов работы, старший научный сотрудник Центра биотехнологий РАН, преподаватель кафедры биоинформатики МФТИ.

Рис. 1. Работа микроРНК. Если микроРНК
Рис. 1. Работа микроРНК. Если микроРНК "садится" на информационную РНК, то синтез белка с иРНК блокируется

МикроРНК – это маленькая молекула РНК, длиной около 20 нуклеотидов, которая участвует в регуляции работы генов. В разных тканях необходима активность разного набора генов, а ненужные гены «глушат» молекулы микроРНК. Они являются как бы маленькими полицейскими, которые узнают ген, который не должен работать в этой ткани, и блокируют его. При многих болезнях наблюдаются отклонения в работе микроРНК, поэтому сейчас разрабатывается терапия анти-микроРНК, например, от рака. Кроме того, молекулы микроРНК можно использовать в качестве лекарства, так как с помощью них можно подавить синтез плохих белков. Однако про то, как регулируется сама микроРНК, известно очень мало.

Звенья РНК – нуклеотиды аденин (A), цитозин (C), гуанин (G), урацил (U) – могут образовывать связи C-G, A-U и G-U. Например, последовательности CCUA и GGGU смогут связываться и будут называться комплементарными, а CCUA и UCCG не будут комплементарны. МикроРНК связывается с почти комплементарным ей участком РНК и таким образом не дает синтезировать белок с этого участка.

Еще лет 30 назад про микроРНК никто не знал. Только в 1993 году была описана первая представительница этих некодирующих РНК, то есть молекул РНК, на основе которых не производятся белки. РНК – это одноцепочечная молекула, состоящая из звеньев-нуклеотидов. Она получается из ДНК – двухцепочечной молекулы, в которой зашифрована последовательность РНК. На основе ДНК получаются все РНК: и кодирующие (матричные или информационные РНК), и некодирующие – перевод из ДНК в РНК называется транскрипцией. Информационная РНК служит "рецептом", по которому производятся белки, а некодирующие РНК участвуют в "приготовлении" белка. Все РНК, чтобы выполнять свои функции, должны пройти несколько стадий созревания. Так, специальные белки вырезают из молекулы РНК длиной около 80-ти нуклеотидов маленький кусочек и получается микроРНК. Говорят, что микроРНК вырезается из предшественника микроРНК, или пре-микроРНК (см. рис. 2).

Рис. 2. Предшественники первой открытой микроРНК (сверху) и первой открытой микроРНК у человека (снизу). Хоть РНК – одноцепочечная молекула, она не обязательно прямая. Так, предшественники микроРНК имеют форму шпильки. Желтый участок – это будущая микроРНК
Рис. 2. Предшественники первой открытой микроРНК (сверху) и первой открытой микроРНК у человека (снизу). Хоть РНК – одноцепочечная молекула, она не обязательно прямая. Так, предшественники микроРНК имеют форму шпильки. Желтый участок – это будущая микроРНК

Транскрипция начинается с того, что специальные белки (транскрипционные факторы) садятся на стартовую площадку – участок ДНК рядом с геном, которая называется промотором. У предшественников микроРНК тоже есть промоторы, однако до сих пор многие из них не были определены достаточно точно. По этой причине было сложно изучать регуляцию микроРНК, хотя большинство микроРНК и их предшественники уже известны. МикроРНК тканеспецифичны: в одних тканях экспрессируются (переводятся из ДНК в РНК) предшественники одних микроРНК, а в других тканях – других. Благодаря этому клетки в разных тканях обладают разными свойствами (потому что разные наборы генов блокируются).

Рис. 3. Интерактивная карта экспрессии. Сверху – типы тканей, справа – микроРНК, на пересечении – уровень экспрессии данной РНК в данной ткани
Рис. 3. Интерактивная карта экспрессии. Сверху – типы тканей, справа – микроРНК, на пересечении – уровень экспрессии данной РНК в данной ткани

Группа ученых составила полный атлас микроРНК с промоторами их предшественников в разных тканях. Работа проводилась в рамках большого исследовательского проекта FANTOM5 (Functional annotation of the mammalian genome – функциональная характеристика генома млекопитающих), который собирает и анализирует данные о функциональных элементах в геноме мыши и человека. Ранее они разработали технологию (CAGE, Cap Analysis of Gene Expression), с помощью которой можно находить промоторы в геноме. Они сопоставили данные о промоторах с данными о коротких РНК и для каждой микроРНК определили предшественника и его промотор. Многие микроРНК были описаны ранее, а некоторые новые микроРНК нашли с помощью специального алгоритма. Кроме этих данных, атлас содержит карту экспрессии предшественников всех микроРНК в более чем ста видах тканей человека. По этой карте можно посмотреть, в каких тканях какие микроРНК играют свою регулирующую роль.

Всеволод Макеев, один из соавторов работы, профессор кафедры биоинформатики МФТИ, поясняет: «Когда вы знаете, где находится промотор, вы можете, во-первых, пытаться понять, в какие регуляторные каскады эта микроРНК включена. А во-вторых, если у человека есть мутации на том участке, где находится промотор, у него могут быть какие-то нарушения регуляции, и вы будете об этом знать, а в будущем даже, возможно, исправлять эти нарушения».


Источники:

  1. polit.ru






Ученые добавили две новые буквы в генетический код

В наших генах есть два «неандертальских процента»

Сколько у вас хромосом? История одной мутации

Инвестиции в редактирование генома

Распространение артритов объяснили исходом человека из Африки

Обнаружены гены, отвечающие за чувствительность к магнитному полю Земли

Вредные мутации в геноме усиливают влияние друг друга

Найдены 6 500 генов, отличающие мужчин от женщин

Антропологи извлекли ДНК древних людей из пещер без костных останков

Расшифровка генома ячменя принесла больше вопросов, чем ответов

Сибирские генетики сделали первые шаги к управлению фотосинтезом

Александр Баев – один из пионеров исследований генома человека

215 петабайт в одном грамме ДНК




© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2013-2018
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://genetiku.ru/ 'Genetiku.ru: Генетика'

Рейтинг@Mail.ru