![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
§ 5. Т. Г. Морган и его хромосомная теорияТомас Гент Морган родился в 1866 г., в штате Кентукки (США). Окончив в двадцать лет университет, в двадцать четыре года Морган удостаивается звания доктора наук, а в двадцать пять лет становится профессором. С 1890 г. Морган занимается экспериментальной эмбриологией. В первом десятилетии 20-го века увлекается вопросами наследственности. ![]() Т. Г. Морган (1866-1945) Звучит парадоксально, но Морган вначале своей деятельности был ярым противником учения Менделя и собирался опровергать его законы на животных объектах - кроликах. Однако попечители Колумбийского университета сочли этот опыт слишком дорогостоящим. Так Морган начал свои исследования на более дешевом объекте - плодовой мушке дрозофиле и затем не только не пришел к отрицанию законов Менделя, но и стал достойным продолжателем его учения. ![]() Н. К. Кольцов (1872-1940) Исследователь в опытах с дрозофилой создает хромосомную теорию наследственности - крупнейшее открытие, занимающее, по выражению Н. К. Кольцова, "то же место в биологии, как молекулярная теория в химии и теория атомных структур в физике". В 1909-1911 гг. Морган и его не менее прославленные ученики А. Стёртевант, Г. Меллер, К. Бриджес показали, что третий закон Менделя требует внесения существенных дополнений: наследственные задатки не всегда наследуются независимо; порой они передаются целыми группами - сцепленно друг с другом. Такие группы, расположенные в соответствующей хромосоме, могут перемещаться в другую гомологичную при конъюгации хромосом во время мейоза (профаза I). Полностью хромосомная теория была сформулирована Т. Г. Морганом в период с 1911 по 1926 г. Своим появлением и дальнейшим развитием эта теория обязана не только Моргану и его школе, но и работам значительного числа ученых, как зарубежных, так и отечественных, среди которых в первую очередь следует назвать Н. К. Кольцова и А. С. Серебровского (1872-1940). Согласно хромосомной теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенном локусе (от лат. locus - место), лежат гены. Поскольку хромосомы парны, то каждому гену одной хромосомы соответствует парный ген другой хромосомы (гомолога), лежащий в том же локусе. Эти гены могут быть одинаковыми (у гомозигот) или разным (у гетерозигот). Различные формы генов, возникающие путем мутации из исходного, называются аллелями, или аллеломорфами (от греч. алло - разный, морфа - форма). Аллели по-разному влияют на проявление признака. Если ген существует более чем в двух аллельных состояниях, то такие аллели в популяции* образуют серию так называемых множественных аллелей. Каждая особь в популяции может содержать в своем генотипе любые два (но не более) аллеля, а каждая гамета - соответственно лишь один аллель. В то же время в популяции могут находиться индивидуумы с любыми аллелями этой серии. Примером множественных аллелей могут служить аллели гемоглобина (см. главу I, § 5). * (Популяцией (от лат. popularus - население) называется группа особей одного вида, объединенных взаимным скрещиванием, в той или иной мере изолированная от других групп особей данного вида.) Степень доминирования в сериях аллелей может возрастать от крайнего рецессивного гена до крайнего доминантного. Можно привести большое число примеров такого типа. Так, у кроликов рецессивным геном серии множественных аллелей является ген с, обусловливающий развитие альбинизма*. Доминантным по отношению к этому гену будет ген ch гималайской (горностаевой) окраски (розовые глаза, белое тело, темные кончики носа, ушей, хвоста и конечностей); над этим геном, а также над геном с доминирует ген светло-серой окраски (шиншилловой) cch. Еще более доминантной ступенью оказывается ген агути - са (доминирует над генами с, ch и cch). Самый доминантный из всей серии ген черной окраски С доминирует над всеми "нижними ступенями аллелей" - генами c, ch, cch, са. * (Отсутствие пигмента (см. главу VII, § 5).) Доминантность, как и рецессивность аллелей,- не абсолютное, а относительное их свойство. Степени доминантности и рецессивности могут быть различны. Один и тот же признак может наследоваться по доминантному или рецессивному типу. Так, например, складка над внутренним углом глаза (эпикантус) у монголоидов наследуется доминантно, а у негроидов (бушмены, готтентоты) - рецессивно. Как правило, заново возникающие аллели рецессивны, наоборот, аллели старых сортов растений или пород животных (еще в большей степени диких видов) - доминантны. Каждая пара хромосом характеризуется определенным набором генов, составляющих группу сцепления. Именно поэтому группы разных признаков иногда наследуются совместно друг с другом. Так как соматические клетки дрозофилы содержат четыре пары хромосом (2n = 8), а половые - вдвое меньше (1n = 4), то у плодовой мушки насчитывается четыре группы сцепления; аналогично этому у человека число групп сцепления равно числу хромосом гаплоидного набора (23). Для ряда организмов (дрозофила, кукуруза) и некоторых хромосом человека* составлены хромосомные, или генетические, карты, представляющие собой схематичное расположение генов в хромосомах. * (К настоящему времени установить точную локализацию генов человека (если принять во внимание общее число генов) удалось лишь в отдельных и относительно редких случаях, например для признаков, сцепленных с половыми хромосомами.) ![]() Рис. 24. Часть хромосомной карты Х-хромосомы дрозофилы (Drosophila melanogaster), составленная по данным перекреста. y (yellow) — желтое тело; sc (scute) — отсутствие некоторых щетинок; pn (prune) — черносливные (темно-коричнево-красные) глаза; w (white) — белые глаза; rb(ruby) — рубиновые глаза; cm (carmin) — карминовые глаза; ct (cut) — обрезанный край крыла; v (vermitfon) — киноварные глаза; m (miniature) — миниатюрные крылья; В (Bar) — полосковидные глаза; f (forked) — вильчатые шетинки; car (carnation) — алые глаза; bb (bobbed) — подстриженные, короткие щетинки и другие гены В качестве примера приведем хромосомную карту части Х-хромосомы дрозофилы (рис. 24). С большей или меньшей точностью в этой карте отражены последовательность генов и расстояние между ними. Определить расстояние между генами удалось при помощи генетических и цитологических анализов кроссинговера, который происходит при конъюгации гомологичных хромосом во время зигонемы профазы I мейоза (см. главу II, § 7). ![]() Рис. 25. Кроссинговер (схема). 1 — две гомологичные хромосомы; 2 — их перекрест во время конъюгации; 3 — две новые комбинации хромосом Перемещение генов из одной хромосомы в другую происходит с определенной частотой, которая обратно пропорциональна расстоянию между генами: чем меньше расстояние, тем выше процент перекреста (единица расстояния между генами названа в честь Моргана морганидой и равна минимальному расстоянию в хромосоме, которое может быть измерено путем кроссинговера). Кроссинговер изображен на рис. 25. В настоящее время известно тесное сцепление некоторых локусов генов и для них вычислен процент пере-креста. Сцепленные гены определяют, например, проявление резус-фактора и генов MN-системы крови (о наследовании свойств крови см. главу VII, § 3). В отдельных семьях удалось проследить сцепление резус-фактора с овалоцитозом (наличие примерно 80-90% эритроцитов овальной формы - аномалия протекает, как правило, без клинических проявлений), которые дают около 3% перекреста. До 9% кроссинговера наблюдается между генами, контролирующими проявления групп АВО крови и фактором Lu. Известно, что ген, влияющий на аномалию строения ногтей и колена, также сцеплен с локусами АВО-системы; процент перекреста между ними около 10. Значительно лучше изучены группы сцепления (а следовательно, и хромосомные карты) Х- и Y-хромосом человека (см. главу VII, § 6). Известно, например, что тесно связаны между собой гены, определяющие развитие дальтонизма (цветовой слепоты) и гемофилии (кровоточивости); процент перекреста между ними равен 10. Правильность гипотезы Моргана была подтверждена в начале века Куртом Штерном (цитологические исследования) и сотрудниками Моргана Теофилусом Пайнтером (цитологом) и Кальвином Бриджесом (генетиком) на гигантских хромосомах слюнных желез личинок дрозофилы (подобных гигантским хромосомам других двукрылых). На рис. 26 показана часть гигантской хромосомы слюнной железы личинки хирономуса (мотыля). ![]() Рис. 26. Часть гигантской полинемной хромосомы слюнной железы мотыля (пуфф отмечен стрелкой) При изучении гигантских хромосом с помощью обычного светового микроскопа хорошо заметна поперечная исчерченность, образованная чередованием светлых и более темных полос дисков - хромомеров; они образованы сильно спирализованными, плотно лежащими рядом друг с другом участками. Формирование таких гигантских хромосом называется политенией, т. е. редупликацией хромосом без увеличения их числа. При этом редуплицированные хроматиды остаются рядом, плотно прилегая друг к другу. Если хромосома, состоящая из пары хроматид, будет девять раз последовательно удваиваться, то число нитей (хромонем) в такой политенной хромосоме будет 1024. Благодаря частичной деспирализации хромонем длина такой хромосомы увеличивается по сравнению с обычной в 150-200 раз. В 1925 г. Стертевант показал наличие неравного кроссинговера: в одной из гомологичных хромосом может оказаться два одинаковых локуса, в которых располагаются, например, гены, влияющие на форму глаза дрозофилы - Ваr, а в другой - ни одного локуса. Так получились мухи с резко выраженным признаком узких полосковидных глаз (ген Ultra Bar) (см. рис. 31). Кроме цитологических доказательств правильности хромосомной теории, были проделаны генетические эксперименты - скрещивание разных рас дрозофилы. Так, среди множества сцепленных генов в плодовой мушке имеются два рецессивных гена: ген черной окраски тела (bleack) и ген зачаточных крыльев (vestigial). Назовем их условно генами а и б. Им соответствуют два доминантных аллеля: ген серого тела и нормально развитых крыльев (А и Б). При скрещивании чистолинейных мух аабб и ААББ все первое поколение гибридов будет иметь генотип АаБб. Рассуждая теоретически, во втором поколении (F2) следует ожидать следующих результатов. ![]() Однако в небольшом, но постоянном проценте случаев встречались необычные потомки из необычных гамет. Таких гамет в каждом скрещивании наблюдалось около 18% (9% Аб и 9% аБ). ![]() Появление таких исключений хорошо объясняется процессом кроссинговера. Таким образом, и генетические исследования позволили установить, что нарушение сцепления - кроссинговер, приводящий к увеличению изменчивости форм, статистически постоянен. В заключение отметим, что целый ряд положений классической генетики на сегодняшний день претерпел ряд изменений. Мы многократно употребляли термины "доминантные" и "рецессивные" гены (аллели) и признаки. Однако исследования последних лет показали, что так называемые рецессивные гены могут фактически полностью ими не быть. Правильнее сказать, что рецессивные гены дают очень слабое видимое или невидимое проявление в фенотипе. Но и в последнем случае рецессивные аллели, внешне незаметны в фенотипе, могут быть обнаружены при помощи специальных биохимических методик. Кроме этого, один и тот же ген при одних условиях среды может вести себя как доминантный, при других - как рецессивный. Так как развитие всех организмов происходит в зависимости и под воздействием внешней среды, то и на проявление генотипа в определенном фенотипе влияют факторы среды (температура, пища, влажность и газовый состав атмосферы, ее давление, наличие патогенных для данного организма форм, химический состав воды, почвы и пр., а для человека и явления социального порядка). В фенотипе никогда не проявляются все генотипические возможности. Поэтому в разных условиях фенотипические проявления близких генотипов могут сильно отличаться друг от друга. Таким образом, в проявлении признака участвуют (в большей или меньшей степени) как генотип, так и среда. |
![]()
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
![]() |
|||
© GENETIKU.RU, 2013-2022
При использовании материалов активная ссылка обязательна: http://genetiku.ru/ 'Генетика' |